Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process.
نویسندگان
چکیده
The synthesis of highly crystalline and monodisperse gamma-Fe(2)O(3) nanocrystallites is reported. High-temperature (300 degrees C) aging of iron-oleic acid metal complex, which was prepared by the thermal decomposition of iron pentacarbonyl in the presence of oleic acid at 100 degrees C, was found to generate monodisperse iron nanoparticles. The resulting iron nanoparticles were transformed to monodisperse gamma-Fe(2)O(3) nanocrystallites by controlled oxidation by using trimethylamine oxide as a mild oxidant. Particle size can be varied from 4 to 16 nm by controlling the experimental parameters. Transmission electron microscopic images of the particles showed 2-dimensional and 3-dimensional assembly of particles, demonstrating the uniformity of these nanoparticles. Electron diffraction, X-ray diffraction, and high-resolution transmission electron microscopic (TEM) images of the nanoparticles showed the highly crystalline nature of the gamma-Fe(2)O(3) structures. Monodisperse gamma-Fe(2)O(3) nanocrystallites with a particle size of 13 nm also can be generated from the direct oxidation of iron pentacarbonyl in the presence of oleic acid with trimethylamine oxide as an oxidant.
منابع مشابه
Green Biological Fabrication and Characterization of Highly Monodisperse Palladium Nanoparticles Using Pistacia Atlantica Fruit Broth
The development of green and safe processes for the synthesis of nanomaterials is one of the main aspects of nanotechnology. In this study, a biological, inexpensive and rapid process for the fabrication of palladium nanoparticles using the aqueous broth of Pistacia Atlantica fruit as a novel biomass product is reported without using extra surfactant, capping agent, and template. The synthesize...
متن کاملRoom temperature solvent-free synthesis of monodisperse magnetite nanocrystals.
We have successfully demonstrated a facile, solvent-free synthesis of highly crystalline and monodisperse Fe3O4 nanocrystallites at ambient temperature avoiding any heating. Solid state reaction of inorganic Fe(ll) and Fe(ll) salts with NaOH was found to produce highly crystalline Fe3O4 nanoparticles. The reaction, if carried out in the presence of surfactant such as oleic acid-oleylamine adduc...
متن کاملMechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study.
The formation and growth of maghemite (γ-Fe2O3) nanoparticles from ammonium iron(III) citrate solutions (C(6)O(7)H(6) · xFe(3+) · yNH(4)) in hydrothermal synthesis conditions have been studied by in situ total scattering. The local structure of the precursor in solution is similar to that of the crystalline coordination polymer [Fe(H(2)cit(H2O)](n), where corner-sharing [FeO(6)] octahedra are l...
متن کاملBlock Copolymer-Mediated Formation of Superparamagnetic Nanocomposites
Well-defined diblock copolymers of bicyclo[2.2.1]hept-5-ene-2-carboxylic acid oxiranylmethyl ester, having both anchoring and steric stabilizing blocks in a 1:1 ratio, have been prepared by ringopening metathesis polymerization (ROMP). The epoxy-containing block copolymer stabilized in situ generated iron oxide (γ-Fe2O3) nanoparticles. The epoxy ester group provided strong chelation between the...
متن کاملHydrothermal synthesis of nano-size zirconia using commercial zirconia powder: process optimization through response surface methodology
A hydrothermal method for preparation of nano-size zirconia has been studied to optimize the effective parameters (precursor concentration, temperature and time) using response surface methodology (RSM). The synthesized zirconia samples were characterized through X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) analyses to identify mean nano...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 123 51 شماره
صفحات -
تاریخ انتشار 2001